Algebraic decoding of the (71, 36, 11) quadratic residue code
نویسندگان
چکیده
In this study, an efficient and fast algebraic decoding algorithm (ADA) for the binary systematic quadratic residue (QR) code of length 73 with the reducible generator polynomial to correct up to six errors is proposed. The S(I, J ) matrix method given by He et al. (2001) is utilised to compute the unknown syndromes S5. A technique called swap base is proposed to correct the weight-4 error patterns. To correct the weight-5 error patterns, the new error-locator polynomials for decoding the five errors are derived. Finally, the modified shift-search algorithm (SSA) developed by Lin et al. (2010) is applied to correct the weight-6 error patterns. Moreover, the computations of all syndromes are achieved in a small finite field. Simulation results show that the proposed ADA is practical.
منابع مشابه
Algebraic decoding of (71, 36, 11), (79, 40, 15), and (97, 49, 15) quadratic residue codes
Recently, a new algebraic decoding method was proposed by Truong et al. In this paper, three decoders for the quadratic residue codes with parameters (71, 36, 11), (79, 40, 15), and (97, 49, 15), which have not been decoded before, are developed by using the decoding scheme given by Truong et al. To confirm our results, an exhaustive computer simulation was executed successfully.
متن کاملDecoding Binary Quadratic Residue codes Using the Euclidean Algorithm
A simplified algorithm for decoding binary quadratic residue (QR) codes is developed in this paper. The key idea is to use the efficient Euclidean algorithm to determine the greatest common divisor of two specific polynomials which can be shown to be the error-locator polynomial. This proposed technique differs from the previous schemes developed for QR codes. It is especially simple due to the...
متن کاملDecoding the (41, 21, 9) Quadratic Residue Code
This paper proposes an algebraic decoding algorithm for the (41, 21, 9) quadratic residue code via Lagrange interpolation formula to determine error check and error locator polynomials. Programs written in C++ language have been executed to check every possible error pattern of this quadratic residue code.
متن کاملNew Algebraic Decoding of (17,9,5) Quadratic Residue Code by using Inverse Free Berlekamp-Massey Algorithm (IFBM)
In this paper a new algebraic decoding approach for (17,9,5) Quadratic Residue Code is proposed by using the Inverse Free Berlekamp-MasseyAlgorithm i.e. IFBM algorithm. By using an efficient algorithm an unknown syndrome are also developed in this paper. With the help of unknown syndromes, we achieve the alternative consecutive syndromes which are needed for the application of the Berlekamp-Mas...
متن کاملAlgebraic Decoding of Quadratic Residue Codes Using Berlekamp-Massey Algorithm
In this paper, an algebraic decoding method is proposed for the quadratic residue codes that utilize the Berlekamp-Massey algorithm. By a modification of the technique developed by He et al., one can express the unknown syndromes as functions of the known syndromes. The unknown syndromes are determined by an efficient algorithm also developed in this paper. With the appearance of unknown syndro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IET Communications
دوره 10 شماره
صفحات -
تاریخ انتشار 2012